
I M P
Integrated Monitor Package

for DEMON/II

Description and Instructions for

Disk Editor
Disk Command Interpreter

Disk Assembler

Disk Loader

Disk Move Program

Disk I/O Supervisor

Revised December 1974

TABLE OF CONTENTS

I . INTRODUCTION 1

II DISKED 2

III . DEMON/11 DISK COMMAND INTERPRETER 11

IV. DISK ASSEMBLER (ASM) 17

V. DISK LOADER PROGRAM (LOADER) 26

VI. EXAMPLES OF ASSEMBLY, EDITING AND LOADING 29

VII. DISK TRANSFER PROGRAM (MOVE) 32

VIII. GENERAL INPUT-OUTPUT HANDLER (IOSUPER) 34

APPENDIX A - Core Information for DEMON/II 40

APPENDIX B - Character Packing Format 41

APPENDIX C - Disk Assembler Mnemonics 42

APPENDIX D - Listing of MOVE 43

I. Introduction

The Integrated Monitor Package (IMP) is a collection of programs
for disk file handling using DEMON/II with the Nicolet 1080 data
systems. It includes the ability to create, assemble, edit, load and
run programs as well as the ability to transfer ASCII and binary
information from high and low speed paper tape devices. Using IMP,
paper tape can be used only for back-up copies, as no paper tape
intermediates are required during assembly. Indeed, listings gener-
ated by the assembler can be written onto disk and then the relevant
portions examined using the editor rather than listing the entire
file.

Further, the disk command interpreter and disk I/O supervisor
allow very sophisticated disk file handling capability from user
programs with only minimal programming complexity. This allows both
program segments and data to be swapped in and out during program
operation.

The beginning user will need to become familiar with the Disk
Editor and the DCI before proceeding to the other programs as all
remaining programs utilize the command decoding capabilities of the
DCI.

1

II. DISKED

Disk Based Text Editor For the Nicolet 1080 system

(NIC-28-40605)

Introduction

DISKED is a text editor which operates on files stored on disk and
places the resulting edited file back on disk. It is intended to be used
with the disk assembler, but can be used to punch out the text onto paper
tape as well.

DISKED operates in conjunction with DEMON/II and must not be used with
older disk monitors. Each file which is to be edited is stored on disk and
given the extension .A (for ASCII), so as not to be confused with binary
data or programs. The files consist of tracks having packed 8-bit ASCII
characters, 5 per two words, with all characters less than 240 ignored
except 215 (return), 214 (Form feed), 211 (Tab) and 212 (Line feed). The
Form character is used as a delimiter within each track's text, indicating
the end of text within that track. Thus, all tracks are stored as 153610

word blocks, regardless of how many meaningful characters they contain.

During operation, DISKED reads in one track at a time from the Input
File keeping count of the line numbers. It unpacks each track to one
character per word for ease of editing and when editing is complete, packs
the information back into the 5-character per 2 word format and writes it
into a second file, called the Output File. The minimum 1080 system which
will support DISKED consists of a 12K system with one disk. The current
version assumes that all operations are performed on disk 1.

Loading and Storage

DISKED is supplied as a binary tape and is loaded using the standard
Binary Loader by typing BIN. To store the program type

STORE DISKED 0-4300;0;P

Be sure to restart the DEMON monitor after loading and before starting
DISKED. The program starts at location zero, prints a number sign (#) and
allows the commands described below.

Command Conventions

The length of each command varies with the amount of information which
is required for its completion. For this reason, the entire command is
typed, followed by a Return before it is interpreted for execution. This
feature also allows character by character modification of the line until
the terminating Return is typed.

The actual commands are all one letter in length. They may be followed
by a number of characters describing the line number or the file name in
various cases.

2

This modifying information is relatively "freeform." It may or may not be
preceeded by a space. It may have as many spaces between components as are
desired. Any character in the command line may be deleted by typing a
Rubout. The Rubout convention of DISKED is that it will print a backslash
and echo the rubbed out character. Additional rubbed out characters will be
printed without additional backslashes until some character other than
Rubout is struck. At this time, a second backslash is printed, thus bracket
ing the rubbed out text between two backslashes. For example, if you had
typed

F FQRT" FORT3

but had really meant to type FQRT2 instead of FORT", you could correct this
by striking the Rubout key 7 times, which would produce

F FORT" FQRT3\3TRQF "

Then, to correct the error, simply type in the 2 followed by the remaining
text :

F FQRT" FCRT3\3TRCF "\2 FQRT3

It is also occasionally useful to delete the entire command line. This can
be done by typing CTRL/O. The program will print ^0, type a carriage
return-line feed and allow entry of a new command. Typing a Return with no
command in the string will cause an ILLEGAL COMMAND error message, as will
typing any letter which is not a command. Spaces are not required except
between file names, but may be added to improve legibility.

All characters produced by holding down the CTRL key and typing the
character are represented in this manual as CTRL/(char); for instance,
CTRL/A. These characters are printed as ^A. The TAB character (CTRL/I) has
the functions of spacing over to the next column divisible by 8. This
allows easy tabulation of text. It can be used in the F, I and S commands.

DSKED Commands
•

A -- Add text to the beginning of a line. Use CTRL/R to finish the
line.

CTRL/A — Append tape in reader to currently open file. Asks MORE TAPE?
Answer Y or N.

B Print out bottom line number and text of the bottom line in the
current buffer.

CTRL/B Write out current buffer and load next one.

C nnnn Change line to new text. Exits at first CR. Equivalent to D
followed by I.

CTRL/C Close current Output file. Writes out all remaining buffers.
This must be done before the output file actually exists in the
disk directory.

D mmmm-nnnn -- Delete lines mmmm-nnnn.

3

E FILE1 FILE2--Edit Input file FILE1 and place result in Output file FILE2.

F FILE1— Create a new file named FILE1. The user can enter text until a
dollar sign is typed. This closes the file.

G — Get and print the next line having a label followed by a comma.

CTRL/G FILE1 FILE2 -- Compress FILE1, combining tracks to occupy minimum
disk space and place the result in FILE2.

H FILE1 -- Punch out FILE1 on the high speed punch.

I nnnn -- Insert text before line nnnn. Exit with CTRL/D.

K FILN FILE1 FILE2 FILE3... — Combine FILE1, FILE2, and FILE3 into one
large file named FILN. Note that the output file is first in the
list .

L FILE1 -- List FILE1 on the Teletype.

M -- Jump to DEMON. This is not allowed if the file has not been
closed.

N -- Print out the next sequential line in this buffer.

CTRL/N — Jump to Nicobug II at 4700.

P mmmm-nnnn— Print lines mmmm-nnnn. Must all be in same buffer.

R FILE1 -- Read in source tape and name it FILE1. Asks MORE TAPE? when
$-sign is found.

SABCDEF —Search for text string ABCDEF starting at current line. String
may be up to 72 characters if desired and may contain spaces.
Terminated with Return.

CTRL/R - Print out rest of line in search string.
CTRL/N - Search for next occurrence of string.
Rubout - Rubs out characters back to beginning of line.
Return - Delete all characters in the rest of the line.
CTRL/O - Delete entire line and allow entry of new text.
ALT MODE - Split line into two at this point in the line.

T — Print out the top line number and top line of the current buffer.

V mmmm-nnnn/dddd -- Move lines mmmm-nnnn to before line dddd. Old position
is not deleted. Lines mmmm-nnnn must all be in the same buffer.

W FILENN -- List out text of FILENN on low speed punch. Equivalent to L
with leader and trailer added.

4

CTRL/W — Write out all text above current line as a separate buffer and
put remaining text in a new buffer to allow more room for insert
ing. Should be used whenever a Bell signals a full buffer.

X mmmm-nnnn FILEN — Extract lines mmmm-nnnn and put them in a disk file
named FILEN. Previous Output file lost.

CTRL/Y -- Yank in next buffer, deleting current one.

+nnnn — Print out the line nnnn below the current location.

-nnnn — Print out the line nnnn above the current location.

: — Print out the current line number.

DESCRIPTION OF COMMANDS

INPUT COMMANDS

R FILENN Read in Tape

The command R causes DISKED to select the high speed reader if it
exists and has tape in it and if not, the low speed reader, and read in an
ASCII source tape until a dollar sign is found. During readin it pauses
after every 3584 characters and writes them onto the disk. When the dollar
sign is found it asks the question

MORE TAPE?

If this is all there is, type N and the program will make an entry in the
disk directory of a file having the name FILENN.A (where any 6-character
file name can be used). If you wish to append several tapes together, type
Y, place the new tape in the reader and type Return. The dollar sign of
the first tape will be deleted and the tape will read in and be appended to
the end of the first tape. The program will, of course, ask MORE TAPE?
again at the end of this and all successive tapes. If the high speed reader
is used, the program will type out the message UNLOAD CATCHER AND TYPE RETURN after
every four tracks stored on disk.

E FILE1 FILE2 - Edit

Editing of a given file begins by specifying the input and output
files to be used. The input file to be edited is FILE1.A and the output
file will be FILE2.A. The command also reads in the first disk text buffer
and initializes the line pointer to the first line. FILE1 is now said to
be "open."

It should be emphasized that FILE2 does not exist at this point, no
matter how much editing has been done, until it is closed using the CTRL/C
command. Before this time data has been written on the disk, but no entry
is made in the disk directory until the file is closed, since until that
time its size is not known. The error messages NO INPUT FILE FOUND and
OUTPUT FILE ALREADY EXISTS are self-explanatory. To delete an old output
file, exit to the monitor, delete the file including the .A extension and
restart DISKED.

5

CTRL/A - Append

While a file is open, additional paper tapes can be added to the end
of the file by typing CTRL/A The program will delete the terminating
dollar sign at the end of the file, select the proper reader and read in
the tape. At the end of the file the program will print MORE TAPE?.
Proceed as during read-in.

F ABC2 - Start a new file named ABC2

The F command allows a new file to be created at the Teletype. It may
be of any length and the Rubout conventions apply but no other commands can
be accessed until the text is terminated with a dollar sign. This causes
the "MORE TAPE" question to be printed. If it is answered Y, this closes
the file. It can then be editied using the E command. During this command
the TAB character can be used.

EDITING COMMANDS

T, B - Print out the top or bottom lines

The editor divides the text into blocks of approximately 3840 char-
acters each, and only one such block is in memory at one time. The line
numbers and the text of the actual first and last lines can be found by
typing T or B followed by a return. This information is only of use when a
block of data is to be operated upon during a Move command.

P, P mmmm, P mmmm-nnnn Print

The Print command will print line mmmm if only one decimal number is
entered. It will print the last line referenced if no line number is entered
and will print lines mmmm-nnnn if two numbers are entered separated by a
dash. If line nnnn is not in the buffer, the command will print all lines
in the current buffer and then go on to the next buffer. If a line or
group of lines is requested which lie before the beginning of the current
buffer, the program will close and reopen the file, find that line number
and perform the indicated operation.

D, D mmmm, D mmmm-nnnn Delete

The Delete command will delete the current line if no number is entered,
one line in any buffer if one number is entered, and all lines from mmmm-
nnnn if two numbers are entered.

I nnnn - Insert

This command allows insertion of lines before line nnnn. As many
lines as desired may be inserted here, with the exception that when the
current text buffer is full, the Teletype bell will ring after each char-
acter, indicating that some action must be taken immediately. When all
lines have been inserted, exit from the Insert mode by typing CTRL/D. The
TAB character can be used to tabulate lines.

6

CTRL/W - Write out the text above the current line

When the core text buffer is full, the user must make a decision as to
how it is to be subdivided for storage. The total core text buffer will
hold 665610 words, or enough for nearly two 3840 word disk tracks. The
Teletype bell will begin to ring when 6528 characters have been entered.
The CTRL/W command will print the line number, write out all of the text
above the current line into a separate disk track, and move all text start-
ing at the current line into a separate disk track, and move all text start-
ing at the current line to the top of the text buffer. This allows room
for additional insertions if necessary.

This operation is only necessary when the Teletype bell rings after
every character of text, and the editor program will normally handle small
overflows by moving that text to the top of the next disk buffer as it goes.

: Print out the current line number

The : command prints out the number of the current line in decimal.

SANCDEF - Search

The Search command is the most powerful one in DISKED as it can be
used for highly sophisticated line modification. The string of text (in
this case ANCDEF) entered following the S command is searched for starting
at the current line number and continuing throughout all buffers to the
end of the text. Spaces are allowed, but the correct number of spaces
must be specified. For instance, the S command would not find

MEMA @TEMP
if

MEMA @ TEMP

were specified as the search string. The string may be up to 72 characters
long and is terminated with a Return. If no match is found, a question
mark will be typed and the line pointer will be pointing to the last line in
the last buffer. It is, of course, possible that a search will miss a string,
if it occurs before the current line number. If you feel that this has
occurred, reset the line number to 1 by typing P1, and when the first line
has been printed, try the search again.

Once the search has found its match, the program will print out the
line up to the end of the search string and await modifications. These
modifications can be the insertion or deletion of characters here by typing
new characters or Rubouts. The following commands are also available:

CTRL/R _ Print out the rest of the line and leave the Search mode.
CTRL/N - Look for the next occurrence of the search string.
Return - Terminate the line at this point.
CTRL/O - Delete the entire line and allow entry of new characters.

^0 is printed.
ALT MODE- Divides line into two at this point.

For example if the command STEM is given, the result might be the
finding of the line MEMA @ TEMP and the printing out of

MEMA @ TEM

7

The CTRL/R command would cause the P to be printed and no modification
to be made on the line. However, the M could be deleted by typing a Rubout,
an R inserted by typing an R and the remaining letters printed out by typing
CTRL/R. The Teletype would show the following for these operations:

MEMA @ TEM\M\RP
#P

MEMA @ TERP
#

The TAB character can be searched for or inserted or deleted in the Search
mode.

A nnnn - Add Text at the beginning of line nnnn

This command allows code to be inserted at the beignning of a line of
text without using the search mode to find it. The usual method would be
to print the line and then type A followed by a Return, enter the required
text and finish the line with CTRL/R. For example, to add a label to line
15, we would type:

P15
MEMA ABCD
A
LABEL, (type CTRL/R) MEMA ABCD (line is finished and the A command exits)
P
LABEL, MEMA ABCD (This is the revised text line).

N - Next

This prints the next line in the same buffer. It advances the current
line counter to that line.

+nnnn, -nnnn - Print lines + and - nnnn lines from current line

The + and - commands allow jumping through text within a given buffer
by causing the printing of lines + or - nnnn lines from the current line.
The current line then becomes that printed. Lines outside the current
buffer will cause the NOT IN THIS BUFFER message to be printed. These
lines can be accessed by the P command or by reading in a new buffer.

CTRL/B - Write out the current buffer and read in the next one

This command allows the next buffer to be read into memory after a NOT
IN THIS BUFFER error message has been given. The command changes the T and
B counters, and sets the current line number to the top of the buffer.

G - Get the next labelled line

G causes the printing of the next line containing a comma before a
slash in the current buffer. It does not go beyond the current buffer and
it always starts at the line after the current one.

8

C nnnn - Change line nnnn

This combines the Delete and Insert commands into one command. Only
one line can be changed, however, as exit from this command occurs when the
first Return is typed.

CTRL/Y - Yank in the next buffer

This command reads in the next buffer without writing out the current
one. This command should be used carefully as it effectively deletes the
entire current buffer. It can be most useful when used in conjunction with
the extract command.

Vmmmm-nnnn/dddd - Move

The MoVe command moves a block of text from one location to another.
The initial line number mmmm need not be in the current buffer, but the
second line number nnnn must be within the same buffer as mmmm. The block
is moved to before the line that was numbered dddd. After the move, of
course, the number will become (dddd + nnnn mmmm + 1). The current line
number will be dddd. The previous copy of the moved text, that occupied
locations mmmmnnnn remains in the text and must be deleted by the user.

CTRL/C - Close the output file

This command writes out the current buffer, reads in all further input
buffers and writes them into the output file. It calculates the length of
this file and enters this, along with the file name, in the directory. The
output file does not exist in the directory until it is closed, so this
command is of utmost importance. A partially edited copy of the output
file will exist if a line in an early buffer is called for after a line in
a later buffer.

OUTPUT COMMANDS

L FILEQ - List

This causes the file named FILEQ.A to be listed on the Teletype.

W FILEQ - Write on low speed punch

This is exactly the same as the L command except that leader and
trailer are also punched.

H FILEQ - Punch

This causes the file FILEQ.A to be punched on the high speed punch.

MANIPULATION COMMANDS

X mmmm-nnnn FILE2 - Extract

This causes lines mmmmnnnn of the current input file to be extracted,
and stored as a separate file named FILE2.A. The lines mmmm and nnnn need
not be in the same buffer. An Edit must be in progress for this command to

9

be allowed. However, the original output file specified in the Edit
command is a dummy and is destroyed by the X command. The extracted file
is closed and no further editing can be done on the input file. It must be
reopened with a new E command.

K FILEX FILE1 FILE7 TEMP5 - Combine

This command combines files FILE1, FILE7 and TEMP5 into one new file
called FILEX. Error messages are printed if FILEX already exists or if the
input files do not. Dollar signs at the end of all but the last file are
deleted. As many files can be specified in the list as can be typed on one
line.

M - Jump to DEMON

Causes a jump to 7600 and starts the disk monitor. This will not be
allowed if an Edit is in progress. If you wish to abort an edit and restart
the monitor, you must use the switch register.

CTRL/N - Jump to Nicobug II

This causes a jump to 4700. If Nicobug is loaded there, fine; other-
wise disaster may strike.

CTRL/G FILE1 FILE2 - Garbage Collection

This command compresses FILE1 to use disk space more efficiently and
writes the result in FILE2. This can be useful if FILE1 was subjected to
extensive deletions or if it was produced by combining short files using
the K command. Note that CTRL/G is the BELL on most terminals and the bell
will ring in this case.

10

III. DEMON/II Disk Command Interpreter

(included in DEMON/II NIC-26-40614)

The DEMON/II Disk Command Interpreter (DCI) is a routine located on
track 11 of the DEMON/II Monitor which accepts input from the teleprinter
and sets up as output tables of input and output files and devices which
then can be used by any calling program. These tables can then be used
with the Disk I/O Supervisor. The following is a general description of
the DCI. This description is of use since a number of Nicolet programs,
including the Assembler and Loader utilize commands from the DCI.

When the DCI is called into core and started, it types a carriage
return-line feed and then prints a commercial sign (@) on the Teletype.
The general format of a command string appears as follows:

@INPUT1,INPUT2/OUTPUT [maximum Filelength] :OPTIONS

The commercial is printed by the DCI. The slash (/) separates the
input files from the output files and the comma (,) separates the individ-
ual files from each other. If no slash is present, all files are regarded
as input files. For example, in the command

(@INPUT1, INPUT2 , OUTPUT

all three of the files would be regarded as input files as there was no
slash. In the next example, all the files in the command string are
regarded as output files.

@/INPUTl, INPUT2, OUTPUT

Whether both input and/or output files are needed depends, of course, on
the requirements of the program that calls the DCI.

Devices and Filenames

The general format of a file is as follows:

FILENAme.Extension-Device

where FILENAme is the name of the file, Extension is a one letter extension
to the filename and DEvice is the logical name of the device which the
filename is on. Presently, the DCI accepts the following devices:

Software Device Number

11

Logical Name Device Software

Dl Disk Unit 1 1
D2 Disk Unit 2 2
D3 Disk Unit 3 3
D4 Disk Unit 4 4
HT High Speed Paper Tape 5
LT Low Speed Paper Tape 6

The Logical Device Name is separated from the filename and extension
by a dash (-). A space is not permitted. If no device is specified, Dl is
assumed. In the case of the paper tape devices (HT,LT), a filename can be
given but is ignored. The dash, however, still must proceed the Logical
Device Name (ie. -HT is legal whereas HT is not). A filename can be any
number of letters but only the first six are significant and the remainder
are disregarded. The extension, which is separated from the filename by a
period, should be either a A,B or C. Whether the extension needs to be
included depends on the individual program. If included, only a period
should separate the filename and extension.

The following extensions are meaningful to all IMP programs.

blank - core image file. This is a copy of a memory region stored
on disk.

.A - ASCII file. This is the text produced by DISKED or ASM and
contains 8-bit ASCII characters, packed 5 per 2 words.

.B - BASIC file. Produced by Nicolet BASIC. Maybe either a
program or a data file.

.C - Binary paper tape image file. This is a disk representation
of a binary tape which can only be loaded using the DISK
LOADER program.

Special Characters

The Disk Command Interpreter regards the following characters as
special characters and the following action will be taken whenever they are
encountered.

Rubout

Typing a Rubout will delete one character to the left for each time it
is struck. The deleted characters will be enclosed in the back slashes
(\). For example, if

©ABCDEF

was typed and the F and the E were to be deleted and a Z added, the
rubout key would be struck twice producing the following output:

@ABCDEF\FE\Z

Internally, the string becomes

ABCDZ

12

Line Feed

The Line Feed key will cause the DCI to print the command string as it
appears internally with all deleted characters missing. For example,
if Line Feed is typed after

@ABCDEF\FE\Z

the DCI prints

ABCDZ

and await more input which is then appended to the string after the Z.

CTRL/O

CTRL/O prints ^0 and deletes the entire line and allows the user to
type a new command.

CTRL/Q

CTRL/Q causes the Disk Command Interpreter to exit to the DEMON/II
Monitor.

Return

Return causes the DCI to start building the tables derived from the
command string. If no errors occur, it will exit to the program from
which it was called. If an error occurs, the DCI will print another
commercial and await a new command string.

Options

Options consist of ASCII printing characters which are preceded by a
colon and followed by a space (or carriage return). Options can appear on
either side of the input/output delimiter and can appear more than one in a
command string. For instance,

INPUT:B /OUTPUT:FG

is legal. However it is usually convenient to group the options at the end
of the line. The meaning of each option is decoded by the calling program.

Optional File Length

The Optional File Length is an octal number enclosed in brackets
([]) which is the maximum number of tracks which an output file will
occupy. This is useful in optimizing storage on a file structured device
since an empty space large enough to hold the file will be selected rather
than the largest empty. On input files and non-file structured devices
this number is disregarded. Below is an example of usage.

@INPUT:A/OUT1 [3D ,OUT2,OUT3C103

The first output file will have a maximum length of three tracks, the
second is unspecified and the third output file has a minimum length of ten
octal or eight decimal tracks.

13

Error Messages

All errors are fatal. An error free line must be processed before a
return to the user program can be made.

SYNTAX ERROR

The command interpreter encountered a mistake in the syntax of the
command string.

ILLEGAL DEVICE

There is no Logical Device Name for this device.

NAME.X NOT FOUND

The filename NAME with the assumed extension X was not found on the
device specified. The extension may not be the one typed in as each
program has the capability of giving the DCI an assumed extension
which is used for a search if the search with the original one failed.

Programming Using the Disk Command Interpreter

This section describes programming using the DCI. It can be disregarded
by those only interested in responding to it.

The Disk Command Interpreter resides on Track 11 of the DEMON/II
Monitor and is 1000(8) words long. It must be called in at 6000 and 3000-
7577 should be stored on tracks 1 and 2 of the Monitor. Below is an accept-
able call in of the DCI.

ONEA /WRITE
JMS @ DISK /FIRST STORE 3000-7577
100001 /ON TRACKS 1 AND 2
4600 /STORE 4600 WORDS
3000 /START AT 3000
ZERA /READ
JMS @ DISK
100011 /FROM TRACK 11
1000 /1000 WORDS LONG
6000 /LOAD AT 6000
ZERM @ DEVDIR /SET SWITCH TO INDICATE THAT CORE SEGMENT

/3000-5777 IS IN CORE (RATHER THAN ON DISK)

DISK, 7612 /ENTRY POINT TO DISK HANDLER
DEVDIR, 7764 /CORE SEGMENT SWITCH

Once the DCI is in core, it is started by performing a JMS to location
6000. After the JMS there should be three arguments which are used by the
DCI. The first argument is a pointer to the Input/Output table buffer.
The second argument is a pointer to the Option table buffer. The third
argument is the ASCII value of the assumed extension which is used if the
initial search for an input file fails. The following is an acceptable

call to the DCI.

14

JMS @ DCI
IOPNT /POINTER TO INPUT/OUTPUT TABLE
OPNT /POINTER TO OPTION TABLE
301 /ASSUMED EXTENSION (A)

/RETURN HERE

IOPNT, BLOCK 20 /RESERVE 20 LOCATIONS FOR INPUT/OUTPUT TABLE
OPNT, BLOCK 10 /RESERVE 10 LOCATIONS FOR OPTION TABLE
DCI, 6000 /ENTRY POINT OF DISK COMMAND INTERPRETER

Format of Input and Output Tables

An input table entry is three locations long and has the following
format:

IENTRY1 /DEVICE #
IENTRY2 /STARTING TRACK. ZERO IF NON-FILE STRUCTURED

IENTRY3 /WORD COUNT. ZERO IF NON-FILE STRUCTURED

The end of input entries is designated by a 3777777 (-1).

The output table entries are four locations long.

OENTRY1 /DEVICE #
OENTRY2 /FIRST THREE CHAR. OF FILENAME, ZERO IF NFS
OENTRY3 /SECOND THREE CHAR. OF FILENAME AND EXTENSION
OENTRY4 /MAXIMUM WORD COUNT IF SPECIFIED, ZERO OTHERWISE

The output file entries are terminated by a 0.

If there are no input files, the start of the table will contain a -1
and if there are no output files, a zero will follow the input terminator
of -1.

Format of the Option Table

The option table simply contains the ASCII values of the option char-
acter, one character per word. After each string (one or more characters)
a zero is stored to indicate the end of the string for that file. The
option table is terminated with a 3777777.

15

Example of Usage

@INP1.B:D /0UT1 [1O],-HT:ZS

The above command string would be parsed as follows by the DCI.

JMS @ DCI /CALL DCI
IOPNT /POINTER TO INPUT/OUTPUT TABLE
OPNT /POINTER TO OPTION TABLE
303 /ASSUMED EXTENSION (C)

/RETURN

IOPNT, BLOCK 20 /RESERVE 20 LOCATIONS
OPNT, BLOCK 5 /RESERVE 5 LOCATIONS
DCI, 6000

After execution of this routine, the following tables would be set up.

IOPNT, 0000001 /DEVICE #
0000300 /STARTING TRACK
0007600 /WORD COUNT
3777777 /INPUT ENTRIES TERMINATOR
0000001 /DEVICE #
0576564 /FIRST THREE CHAR OF FILENAME
0210000 /SECOND THREE CHAR AND EXTENSION(NONE)
0030000 /MAXIMUM FILE LENGTH IN WORDS
0000005 /DEVICE # OF SECOND OUTPUT ENTRY
0000000 /NO FILENAME (NON-FILE STRUCTURED)
0000000
0000000 /NO WORD COUNT SPECIFIED
0000000 /TERMINATES OUTPUT ENTRIES

0
0
0

OPNT, 304 /OPTION D
0 /STRING TERMINATOR

332 /OPTION Z
323 /OPTION S
0 /STRING TERMINATOR

-1 /END OF TABLE

Note that if input file INP1.B was not found a search for INP1.C
would be performed.

Cautionary Notes

It is possible for the command string to overflow your buffers. It is
a good idea to check the addresses of the terminators to check for overflow.
Do not call the DCI from or have your table pointers in this 6000-7577
region. The DCI does not dismiss itself but does leave 3000-5777 in core
when it returns to the user program. The scratch area in the Monitor Head
is used since the DCI calls DIRFUN to look up the input files to see if
they exist.

16

IV. Disk Assembler (ASM)

(NIC - 29-40515)

The Disk Assembler is a program which translates the Nicolet 1080
mnemonic codes into a binary format which can then be loaded into memory
and executed. ASM has the capability of storing up to 1710 user and
permanent symbols on a 12K system. The large size of the symbol table
allows a user to assemble extremely large assembly language programs and
thus let the assembler resolve addressing problems at assembly time instead
of having the programmer do it with smaller sections. Also ASM has a large
number of Pseudo-operators which also ease the burden of programming. ASM
is a three pass assembler. In its first pass through the text, it creates
a symbol table which is stored in memory. During its second pass, it pro-
duces a binary tape or disk file and during its third pass a listing. These
three functions are commonly referred to as Pass 1, Pass 2 and Pass 3.

Loading Procedure

ASM must be used with Demon/II Disk Monitor. When the monitor is in
residence, place the ASM binary tape in the appropriate reader and type

BINLDR

and Return. In the case of the Teletype, turn the reader to start. After
the processor and reader stop, remove the tape from the reader and restart
the monitor at 7600. To store the program type

STORE ASM 0-7577;0 :P

and Return. The program is now stored on disk for future use.

Using the Program

To run the program, type

RUN ASM

and Return. The program will start and move the permanent symbol to 106000
and then call in the Disk Command Interpreter which will then print a
commercial (@). ASM will assemble up to four input files and can create a
binary output file, and also a listing output file compatible with the
Disk Editor (DISKED). The input files must all have .A extensions. Input
is not allowed from a paper tape device (ie. high speed reader or Teletype).
The following options are available.

E Error Analysis. No output files are needed for this operation.
The assembler will look for errors in the source file(s) and if
found print them on the Teletype or terminal.

17

B Binary. The source is assembled and a binary output file is
created. If this file is written onto disk it will have a .C
extension.

L Listing. The source is assembled and a listing file will be
created. As mentioned previously, if a listing is stored on disk,
it can be listed and searched by using the Disk Editor. One must
be careful not to use the same name for the listing file as the
source file(s) .

T Tabulate. This option forces the assembler to insert eight
leading spaces on non-labeled lines. This feature enhances the
format of the listing, especially for lazy programmers who do not
indent their non-labeled code. This option can be used with the
L and F options.

F Full options. This option causes the assembler to perform both
the binary and listing passes. Two output files must be specified
with the binary being the first of the two.

X Convert tabs to spaces. Whenever a tab is encountered, a space
is printed instead of a tabulation.

ASM always returns to the monitor when finished. The program is not
restartable. It must be reRUN every time it is used. Control can be
transferred to the monitor by typing CRTL/Q during execution.

Special Characters

Legal characters consist of the numbers 0-9 and the letters A-Z and
the special characters listed below. Symbols can only be formed from the
alphanumeric set with the exception of A-M, A+M, M+A and M-A. Conversely
the symbols M and A are illegal since they have special meaning in the
Nicolet mnemonic codes.

, comma The comma defines a label. ex:

*1000
TEMP, 0 /The comma defines TEMP to 1000.

+ plus Adds symbols or numbers. Arithmetic is performed
in the order of occurence. ex:

MEMA TEMP+1 /Load the contents of the address
following TEMP.

minus Negates symbols or numbers. ex:

MEMA TEMP-1 /Load the contents of the address
/preceeding TEMP.

! exclamation Multiplies symbols or numbers. ex:

MEMA TEMP!2 /Load the contents of the address of
/twice TEMP.

18

space Combines an delimits symbols and numbers. Spaces
should not be imbedded between other items of syntax.

* aster isk Set current location counter. ex:

*200 /Set PC to 200.

Return Terminate l ine .

Tab Same function as a space

= equals Define parameters. ex:

TEMP=1000 /Set TEMP to 1000
MEMA TEMP /Equivalent to MEMA 1000
Note, do not imbed spaces either before or after
the equal sign.

/ slash Indicates s t a r t of comment.

quote Obtain ASCII value of following character. ex:

MEMA ("A /Equivalent to a MEMA (301

@ commercial Set indirect b i t .

(left parens. Set immediate mode.

number sign Indicates value of current location counter. ex:

*200

TEMP, # /Location 200 contains 200

$ dollar sign Terminates pass.

; semi-colon Floating point constant. Must be used with l abe l .

< less than Delimit conditional assembly.

> greater than Limit conditional assembly.

Description of the Pseudo-Operators
Pseudo Ops are special assembler instructions for performing special

tasks that generally make programming easier. Use of the Pseudo Op name in
a manner other than described will often cause the assembler to crash.
Therefore, do not use their names as labels!

TEXT

The TEXT Pseudo Op packs a character string into a stripped ASCII
format. The general format of this Pseudo Op is as follows,

TEXT ZNNNNNZ

19

where Z is a delimiting character and N is any printing character except «-.
A space must separate TEXT from the delimiting character. When the second
delimiting character is encountered, a 77, which is the stripped ASCII
terminating code, is inserted in the binary. For example,

TEXT %HELLO THERE%

would be assembled as follows

504554 TEXT %HEL
545700 LO
645045 THE
624577 RE%

Notice that in this example the percent sign (%) was used as the delimiting
character and caused a 77 to be inserted at the end of the string.

PAGSKP

The PAGSKP Pseudo Op forces the listing to skip to the top of the next
page. This is useful in separating sections of code. This command is also
given internally by the TITLE Pseudo Op.

BLOCK

BLOCK is used to reserve storage with zeroes. The general format of
the BLOCK is

BLOCK n

where n is the number of sequential locations to be filled with zeroes.
The number can be an octal or decimal constant or alternatively it can be
an expression. If so, all labels used in the expression must be defined
previous to that point or an assembly error will occur. If the value of
the expression is minus, an IR error message will be printed and the Pseudo
Op will be aborted.

DECIMAL or DECIMA

One bothersome programming detail is the searching for an octal equiv-
alent of a decimal number. The DECIMAL Pseudo Op causes all numbers encoun-
tered after it to be treated as decimal instead of octal.

Ex.

*0
0 100 C100, 100 /100 OCTAL

DECIMAL
1 144 D100, 100 /100 DECIMAL
2 1750 D1000, 1000 /1000 DECIMAL

20

OCTAL

The OCTAL Pseudo Op forces the number radix of the assembler back to
octal. Since the radix of the assembler is normally in octal, this command
is only needed after the DECIMAL Pseudo Op.

FIXTAB

This Pseudo Op appends all symbols previously encountered to the
permanent symbol table. They will not be printed on the symbol table
listing. This Pseudo Op should only be used after EXPUNGE or before actual
program coding.

EXPUNGE

EXPUNGE zeroes the permanent symbol table excluding the Pseude Op
section. Therefore, the symbols A+M, M+A, M-A and A-M are not affected.

NOLIST

In a large number of cases, only a small section of coding is changed
in an assembly. In some assemblers, all the source must be listed in order
to view a certain section. The NOLIST Pseudo Op suppresses listing.
Coupled with the LIST Pseudo Op, it can be used to list a section of code.
If NOLIST is still set at the end of the listing pass, no symbol table will
be printed.

LIST

The Pseudo Op enables pass 3 output. This is the default listing mode.

NOPUNCH or NOPUNC

NOPUNCH halts binary output on pass 2. Used in conjunction with
STPUNCH, it can be used for generating overlays and relocatable code.
Below is an example of what is meant by relocatable.

*0
NOPUNCH
*100 /CHANGE THE ORGIN BUT DON'T PUNCH IT
STPUNCH /ENABLE PUNCHING
MEMA TEMP /THIS IS LOADED AT 0, BUT ASSEMBLED AS IF

TEMP, 0 /AT 100

21

STPUNCH or STPUNC

STPUNCH enables binary output on pass 2. This is the default mode.

TITLE

The pass 3 page heading is generated from the first line in the source.
The TITLE Pseudo Op allows the user to change the heading during the list-
ing. It has the general format,

TITLE XZZZZX

where X is a delimiting character and Z is a printing character. For
instance,

TITLE %CHANGE THE HEADING!%

would cause the heading

CHANGE THE HEADING!

to appear on succeeding page headings. TITLE also causes a PAGSKP.

TAPEND

ASM can assemble more than one input file. TAPEND causes the assembler
to terminate the current file and fetch the next one. If TAPEND is not
present, a PH (phase) error occurs when more than one file is assembled.

ASMIFZ

ASMIFZ stands for ASseMble IF Zero. The general format is as follows:

ASMIFZ expression or symbol
<code
>

If the value of the expression or symbol following ASMIFZ is zero, then the
code delimited by the less than (<) and greater than (>) character will be
assembled. If the expression is not zero, then the code enclosed will be
ignored. This Pseudo Op can be nested. Below is a example of how condit-
ional assembly can be used.

22

SWTCH=0
ASMIFZ SWTCH
<
MEMA TEMPI /ASSEMBLE IF SWTCH=0

>
ASMINZ SWTCH
<
MEMA TEMP2 /ASSEMBLE IF SWTCH=1

>

If the symbol SWTCH is set to zero as shown here, the line MEMA TEMPI is
assembled and the line MEMA TEMP2 is ignored. If the symbol SWTCH was
defined as non-zero by SWTCH=1, the line MEMA TEMP2 would be assembled.
The MEMA TEMPI line is then ignored. Assembler instructions such as
NOLIST or DECIMAL within conditional assemblies are ignored if that section
is not assembled.

ASMINZ

ASMINZ stands for ASseMble if Not Zero. This Pseudo Op is the com-
plement of the ASMIFZ in that the delimited code is assembled if the
expression is not zero. ASMIFZ and ASMINZ can be nested together.

Address Arithmetic

One programming mistake that is commonly made is overstructuring of
the program. For instance, lists have no provision for additional entries,
starting points are fixed, etc. Below are two examples of lists, one using
the assembler's arithmetic capabilities and another which could be coded by
hand with little difficulty.

/THIS COULD BE CODED BY HAND
ACLIST, 1000 /STARTING ADDRESS
LCNT, 5

*1000
303240 /100000
23420 /10000
1750 /1000
144 /100
12 /10
$

/THE ASSEMBLER COULD DO THIS ONE
ACLIST, XLIST /STARTING ADDRESS OF LIST
LCNT, CNT /# OF LOCATIONS IN LIST
DECIMAL /SET RADIX TO DECIMAL
XLIST, 100000

10000
1000
100
10

CNT=#-XLIST /CALCULATE LENGTH OF LIST
OCTAL /RETURN TO OCTAL RADIX

$
23

Notice in the second example that the origin setting is unimportant and that
in the other it is fixed. The second list could be assembled on any page
and still function correctly, but the first list would require changes in
the origin setting and pointer to the starting address. Also, if the
number of items in the list changed, the first example would require a
change to LCNT but in the second example, the assembler would automatically
compensate for length changes. Since the symbol table is so large, one
should not hesitate to use these features. However, when used in an ex-
pression, such symbols must be defined previous to that point.

Error Messages

Error messages have the general format

NN XXXXXX AT ZZZZ

where NN is the error code, XXXXXX is either the symbol name or octal value
of the expression that caused the error and ZZZZ is the value of the current
location counter. All error messages are printed on the Teletype during
the first two passes and are printed on the listing on the third pass.

Error Codes

IS Illegal suffix. The suffices used are the same or one was used
where it shouldn't have been.

NL No label. The label has not been defined on the first pass. The
address in the instruction contains the local address of where
the label was first encountered.

DL Duplicate label. This label has been previously defined. It is
not redefined.

SE Symbol table exceeded. More than 170610 permanent and user
symbols are used.

IC Illegal Character. A character which the assembler considers
illegal has been encountered.

IR Illegal reference. The page of the address and current page are
not the same or a minus BLOCK size has been specified.

PO Pushdown overflow during parsing. The expression is too complex.

PU Pushup underflow. This is usually a machine error.

RD Redefinition of an expression.

IM Illegal immediate. There was no instruction present, the value
of the immediate expression was greater than 2000 or the M suffix
was used.

NO No output file.

24

PH Phase error. The number of input files used and the number
specified do not agree.

II Illegal input. The high or low speed reader was specified as the
input device.

HD Hardware error. An unrecoverable disk read error occured.

NR No room on disk for output.

NO, PH, II, HD and NR return to monitor. The PO and PU errors cause the
current pass to be terminated and the next one initiated.

Examples of Usage

The following examples deal only with the setting up of the Input/
Output specifications. The following example assembles one source file
FT74.A on disk 1, creates a binary file FT74.C on disk unit 2 and puts the
pass 3 listing on the low speed paper tape device (Teletype or terminal).

@FT74.A/FT74.C-D2,-LT:F

The F option was used since both the binary and listing were created. If
the A extension was not used on the source file, first a file with no
extension would be searched and if this was not found, a search for a file
with the A extension would be performed before a FILE NOT FOUND error
message is printed.

Below is an example of an error analysis of FILE1 on disk unit 2 and
FILE2 on disk unit 1.

@FILE1-D2,FILE2:E

Notice that no output files were needed and that disk unit 1 is the default
disk if no disk is specified.

Below is an example of a forced tabulated listing of FT74.A which
would go on disk for examination by the Disk Editor. If LIST did not have
an A extension, ASM would force the extension on.

@FT74.A/LIST.A:TL

If T was not used the listing would be non-tabulated unless tabs were used
in the source.

25

V. Disk Loader Program (LOADER)

(NIC-30-40514)

Files having the .C extension are generally produced by the Disk
Assembler and are simply images of what would have been put on paper tape
if binary output to paper tape had been specified. They contain starting
addresses, checksums and rubouts much as a binary tape would. They cannot
therefore be loaded using the DEMON LOAD command, as this command expects a
copy of a memory region called a core image file. The Disk Loader program
has been designed to load these .C files into memory. Thus, it is really a
Binary Loader for disk files that look like paper tape. Once these files
have been loaded once by the Disk Loader, they can be STOREd using the
DEMON STORE command as core image files which could be LOADed or RUN using
DEMON. For versatility, the Disk Loader program also allows loading of
core image files (those having no extension) but this feature is of some-
what lesser use.

Loading Procedure

This program must be used in conjunction with Demon/II. When the
Demon/II Keyboard Monitor is in residence, place the LOADER binary tape in
the appropriate reader and type

BINLDR

followed by a Return. If a low speed reader is being used, turn it to
start. When the reader and processor stop, remove the tape from the reader
and restart the monitor at 7600. To store the program on disk, type

STORE LOADER 100000-101500;100000 :P

and Return. The program will now be stored on disk for future use.

Program Usage

To use the program, type

RUN LOADER

and Return. LOADER then calls in the DCI which responds with a commercial
(@).

The general format for loading a disk file named ABCDE in . C format is

@ABCDE:opt

where the options are L, M and G. Several files can be strung together and
loaded at once by typing

@ABCDE,AB,FZ,Al:opt

26

The options have the meaning

L - load the files and return to the LOADER
M - load the files and return to DEMON/II
G - load the files and start at 0

G=nnnn - load the files and start at address nnnn
C - load the core image file

If no options are given, L is assumed.

While ordinary binary files, such as spectra or paper tape loaded
programs are most easily loaded using the DEMON/II commands, the LOADER
will allow combinations of all three. Only one such file per command line
is allowed, however.

When the LOADER is run, it intially destroys 100000-102777. This is
of little consequence since if that section was saved on disk before the
LOADER program was run, it can be reloaded using the C option and overlay
the LOADER. Whenever a G or M option is used, all core is restored. After
using these two options, you cannot type GO 100000 to restart the LOADER
since it overlays itself with that code which was loaded into 100000-102777
or if none was loaded, with what was last on tracks 14 and 15 (the scratch
loading area on disk).

If no extension was given on the input file (output files are ignored),
first a directory search will be made for that name and if the search
fails, the name with a C extension will be used for the search. You must
be careful not to load a core image file instead of a binary or vice versa.

Examples of Usage

To load the file FT74.C which was produced by the Disk Assembler, type
after the commercial sign of the Disk Command Interpreter:

©FT74.C:L

or

©FT74 . C

In order to load this program and start it,

GPT74.C:G

This starts the program at location 0. If the program were to be started
at 1000, the command would have the following format.

@FT74.C:G=1000

27

Mow, suppose the binary FT74 tape file produced by this assembly does not have the
Floating Point Package included. To load the FPP from the high speed reader and
the FT74 file from disk, and return to the Monitor, the following command could be
used.

@-HT,FT74.C:M

When the paper tape file is to be read in, the LOADER prints either an ^ or
on the Teletype or terminal and waits for any character to be struck on

the keyboard. This initiates reading of the paper tape. Each time a new
paper tape file is to be read, the ^ or ^ will be printed. In order to
load the core image copy of FT74 (generated by the DEMON STORE command),
type

@FT74:C

Only one core image file can be loaded at a time.

Error Messages

BAD BINARY CHECKSUM!

The file read in had a bad checksum. Control returns to the
Disk Command Interpreter for new input specifications. This
can also occur if a core image file was specified instead of
a .C file.

MORE THAN ONE CORE IMAGE!

More than one file was used when using the C option. Control
returns to the Disk Command Interpreter.

READ ERROR!

The disk hardware error flag was set during the last operation.
Control returns to DEMON/II.

MONITOR CANNOT BE OVERLAYED!

LOADER will prevent any intrusion into the Monitor Head as it
could prove potentially fatal. Control returns to DEMON/II.

28

VI. Examples of Assembly, Editing and Loading

The following Teletype output was produced during the assembly, editing
and debugging of a simple program to print out the word "TEST." It illus-
trates simple uses of the Editor, Assembler and Loader. The process
starts by the creating if a file named TEST using DISKED.

* RUN DSKFD DISKED is started from DEMON

#FTEST The F command is used to begin a file named TE
/TEST PROGRAM
*0
START, MEMA ("T /T Note the use of the TAB character to tabulate

JMS TYPE labels, code and comments. This greatly
MEMA ("F /F improves legibility.
JMS TYPE
MEMA ("S /S
JMS TYPE
MEMA "T /T
JMS TYPE
JMP 9 K7600 /RETURN! TO DEMON

K7600, 7600

TYPE, 0
TTYPE
JMP #- 1
PRTTY
JMP @ TYPE

$
MORE TAPE?N Answering N here closes the file and allows
#M other DISKED commands. M causes a return to

DEMON.
*RUN ASM The Disk Assembler is started.

@TEST.A:E An error analysis is performed on the file
TEST.A

*RUN ASM The Disk Assembler is restarted

@TFST.A/TEST.C:\:\,-LT:F The program is told to assemble the file
TEST.A/TEST.C,-LT:F TEST.A, produce a binary file named TEST.C and
a listing on the low speed tape device

(Teletype). A Line Feed was struck after the
first line to get a clean copy of the command
string before executing it.

29

/ T F S T PROGRAM Note that the t i t le is the first printed line
unless the TITLE Pseudo-Op is used.

/TFST PROGRAM
*0

0 110324 START, MEMA ("T /T
1 2000012 JMS TYPE
2 110305 MEMA ("E /E
3 2000012 JMS TYPE
4 110323 MEMA ("S /S
5 20000 12 JMS TYPE
6 2110324 MEMA "T /T
7 2000012 JMS TYPE
10 1000011 JMP @ K7600 /RETURN 10 DEMON
11 7600 K7600, 7600

12 0 TYPE, 0
13 6444 TTYPE
14 13 JMP #-1
15 4443 PRTTY
16 1000012 JMP @ TYPE

CTRL/Q is typed to abort the listing after the
text and before the symbol table.

*RUJ \ J\M LOADER The loader is started.

@TEST.C:G The program TEST.C is loaded and started at 0.
TES But only the characters TES are printed out.

Clearly there is a bug in the program TEST since it does not print out
the final T as we wanted it to. Therefore we look back at the listing and
discover that at location 6 the code MEMA "T is used rather than MEMA ("T.
This loads the contents of address 324 instead of the number 324 into the
AC.

Therefore, in order to get this program to work, we must generate a
new file with this missing left parenthesis added. This is shown on the
following page.

30

